Расчет бетонного пола по нагрузке

Как выглядит правильное устройство бетонных полов

  • 1 Общие сведения
  • 2 Основные этапы
    • 2.1 Укладка по грунту
    • 2.2 Подготовка оснований
    • 2.3 Гидроизоляция
    • 2.4 Укладка чернового бетонного основания
  • 3 Укладка финишного основания
  • 4 Финишная обработка
  • 5 Нарезка швов
  • 6 Вывод

Полы из бетона хорошо зарекомендовали себя в помещениях с большими нагрузками (склады, гаражи). Хотя технология изготовления является непростой, их можно изготавливать самостоятельно. В данной статье будет подробно рассмотрено устройство бетонных полов и их особенности.

На фото – схема бетонного пола

Общие сведения

Как и на любые изделия, существует и СНиП на бетонные полы, которые должны соответствовать определенным нормам и стандартам, основываясь на такие характеристики, как:

  • срок службы;
  • уровень устойчивости к воздействию агрессивной среды;
  • нагрузка на бетонный пол должна соответствовать указанной в проекте.

Исполнительная съемка бетонного пола проводится с помощью лазерного нивелира

Получению поверхности, который будет идеально соответствовать всем вышеперечисленным требованиям, предшествуют два основных требования:

  • Все используемые материалы должны быть хорошего качества.
  • Во время процесса изготовления бетона необходимо тщательно соблюдать технологию.

    Основные этапы

    Технология устройства бетонных полов включает в себя четыре основных стадии:

  • Подготовительные работы с основанием;
  • Укладка бетонной смеси в стяжку;
  • Последующая обработка поверхности;
  • Процесс нарезки швов и их герметизация.

    Стоит отметить, что укладка пола вполне возможна не только на уже существующее основание, но и на землю. Но расчет бетонного пола в этом случае, хотя и подразумевает существенную экономию средств, является достаточно энергозатратным. Кроме того, эффективность такого способа проявляется только в достаточно сухих местах.

    Совет: при укладке бетонного пола на грунтовое основание необходимо обустроить дренаж. Это поможет избавиться от излишков влаги, а также обезопасить стяжку от дальнейших повреждений.

    Как проводятся бетонные работы по бетонным полам

    Укладка по грунту

    Поэтому перед изготовлением бетонного покрытия по грунту, сначала необходимо уложить подушку в виде слоя песка либо щебенки, чтобы снизить влияние грунта, а также избавиться от возможных промерзаний и влияния грунтовых вод.

    Поскольку такой пол будет иметь многослойную структуру, давайте представим ее компоненты.

    Конечно, инструкция будет примерной, каждый может выполнять обустройство по-своему, в зависимости от ситуации:

  • Сделайте на дне плотное основание.
  • Насыпьте сверху слой речного песка.
  • Сделайте слой из керамзита или щебенки.
  • Проведите гидроизоляционную работу с помощью полиэтиленовых пленок.
  • Сделайте черновую бетонную стяжку.
  • Накройте ее пароизоляционным материалом.
  • Положите сверху «бутерброда» утеплитель.
  • Сделайте чистовую армированную стяжку.

    Изготовления пола из бетона на грунте

    Подготовка оснований

  • Оцените необходимый объем работ, определив на каком уровне будет расположено основание.
  • Проведите утрамбовку грунта после земляных работ, желательно с помощью соответствующего оборудования.
  • Сделайте песчаную подушку из речного песка. Этот слой также следует тщательно утрамбовать.
  • Насыпьте поверх него шар керамзита или некрупного щебня для бетона.

    Совет: увеличение плотности песка достигается таким образом — возьмите его на четверть больше необходимого, смочите его, тщательно утрамбовывайте, пока не будет достигнута необходимая толщина.

    Гидроизоляция

    Она выполняет сразу две важные функции:

  • Не позволяет грунтовым водам попадать в бетонную стяжку.
  • Препятствует впитыванию влаги от стяжки основанием.

    Для ее изготовления используется рулонные материалы, полимерные мембраны или же толстые слои полиэтилена. Не забывайте, что гидроизоляционный слой должен быть уложен внахлест. Напуск на стены должен составлять не менее 150-200 мм, а для склеивания стыков лучше всего использовать скотч.

    Совет: при заказе работ в строительной организации, за основу расчета можно взять ЕНиР на бетонные полы .

    Работы по гидроизоляции рулонным материалом

    Укладка чернового бетонного основания

    Данный слой будет выступать в качестве основания для гидроизоляции. Для изготовления черновой стяжки используется «тощий» бетон, в котором применяется щебенка с размером фракций от 5 до 20 мм. Поскольку к процессу ее укладки не предъявляются какие-либо особые требования, данный процесс проходит легко.

    Совет: толщина бетонного пола в данном случае должна превышать 40 мм, а максимальный перепад в горизонтальной плоскости должен составлять не более 4 мм.

    Сверху черновой стяжки необходимо уложить слой, который будет обеспечивать пароизоляцию. Наиболее подходящим материалом для этого являются мембраны битумно-полимерного типа.

    После этого обычно проводят утепление пола, однако перед началом работ необходимо убедиться, насколько данный процесс будет важным, а также какие материалы будут для него наиболее подходящими. Помните, что они должны обладать водоотталкивающими свойствами.

    В противном случае вам необходимо будет существенно усилить гидроизоляционный слой. Одним из наиболее распространенных вариантов является слой пенопласта особой плотности и качества, цена которого выше обычного, или экструдированного пенополистирола.

    Совет: расчет толщины бетонного пола напрямую зависит от поверхности, на которую он заливается.

    Укладка финишного основания

    Данный процесс также состоит из нескольких этапов:

    Армирование В данном случае вполне подойдет дорожная сетка. Однако если пол будет подвергаться существенным нагрузкам, наиболее оптимальным вариантом будет каркас из металлических диаметром не менее 8 мм. Заливка смеси Бетонная смесь должна заливаться равномерно и достаточно быстро, поэтому лучше воспользоваться спецтехникой. Установка маяков Чаще всего между маяковыми рейками соблюдается расстояние в 2 метра, это позволяет опирать на них концы правила. Заливка пола Проводится на 15 мм выше установленных маяков. Уплотнение Лучший вариант – использование вибратора, с последующим выравниванием поверхности.

    Финишное полимерное основание

    Финишная обработка

    По завершению последнего этапа необходимо немного подождать, пока бетон обретет достаточную прочность. На время технологического перерыва влияет температура окружающей среды, а также влажность воздуха. В зависимости от этих условий, время может колебаться в пределах от 3 до 7 часов.

    Затирочные работы машинами

    Когда глубина следа на поверхности не превышает 2-3 мм необходимо провести ее первичную (грубую) затирку с помощью дисков или затирочных машин. Окончательная (финишная) затирка проводится при глубине следа на поверхности 1 мм.

    Совет: если вам необходимо добиться еще большей прочности пола, используйте топпинг. Это специальная смесь, состоящая из цемента и добавок, которая втирается в бетон.

    Нарезка швов

    Не секрет, что бетон, используемый в стяжках, является достаточно хрупким материалом, и может подвергнуться растрескиванию. Для предотвращения данного процесса и осуществляется нарезка деформационных швов.

    Всего выделяются такие их виды:

  • Изоляционные, которые используются в тех местах, где происходит соприкосновение разных поверхностей, например, пола и стен, пола и колонн. Главная задача – воспрепятствование передаче вибраций.
  • Усадочные, применяются для снятия напряжений при высыхании и усадке пола.
  • Конструкционные, используют для разделения бетонов, уложенных в разное время.

    Нарезка швов должна осуществляться сразу же после набора бетоном определенной прочности, но до появления на поверхности трещин. Для разметки используется мел, а порядок работы определяется последовательностью укладки бетона.

    Нарезка швов алмазным диском

    При этом подобные швы должны заходить примерно на треть глуби стяжки. Для облегчения ухода за ними и укрепления краев используется герметизация.

    В завершении хотелось бы сказать, что укладывать бетонный пол можно и своими руками. Главное – внимательно отнестись ко всем нюансам, а также к деталям процесса. В результате вы получите прочный, ровный, теплый пол, который сможет справляться с существенными нагрузками.

    В данной статье было рассмотрено подробно устройство бетонных полов на грунте и на старой бетонной стяжке. Данные принципы могут применяться также и на других основанием, с соблюдением определенных нюансов. Фактически работы не отличаются особой сложностью, но требуют соблюдения инструкции и больших физических затрат, облегчить которые сможет только современная техника. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

    Как правильно рассчитать нагрузки на полы?

    Проектирование – это крайне ответственный этап строительства здания или конструкции. Именно на этом этапе определяется надежность структурных элементов и их долговечность. Ошибки при проектировании могут стать причиной появления критических дефектов и не позволить нормально эксплуатировать объект. В полной мере это относится и к проектированию бетонных полов.

    Читать еще:  Как вычислить кубатуру фундамента

    К сожалению, многие проектировщики ошибочно не выделяют полы в особый вид конструкций и применяют к ним те же подходы, что и к фундаментам или другим бетонным элементам. В результате бетонная плита пола может быть запроектирована, как с избыточным запасом прочности (то есть может быть неоправданно дорогой и материалоемкой), так и наоборот – недостаточно надежной. И хотя полы не относятся к разряду ответственных конструкций, их прочностные характеристики важны для безопасной и эффективной эксплуатации объекта строительства в будущем.

    Особенно важным в этой связи является определение воздействий и нагрузок, которым будет подвергаться бетонный пол. Характер воздействий, в первую очередь, повлияет на выбор покрытия пола, и этот вопрос заслуживает отдельного рассмотрения. Однако и с определением нагрузок возникает ряд спорных моментов, причем трудности зачастую возникают даже у опытных проектировщиков.

    Равномерно распределенная нагрузка

    Наиболее частой ошибкой при проектировании полов является принятие за отправную точку равномерно распределенной нагрузки. Эта характеристика выражается в ньютонах или килограммах на метр квадратный, а также паскалях. Эту величину принято закладывать в расчеты плит перекрытий или использовать при проектировании фундаментов зданий, однако следует с осторожностью использовать в случае полов. Строго говоря, распределенной нагрузкой является нагрузка от предметов непосредственно лежащих на полу, например, листов металла или фанеры, хранящиеся навалом сыпучие материалы. В более общем случае за такую нагрузку принимают и находящиеся на полу предметы, занимающие значительную площадь и имеющих большое количество зон контакта с полами. Примером последнего могут служить хранящиеся на полу склада паллеты , также к равномерно распределённой нагрузке относят и пешеходов.

    Тем не менее, нередко приходится сталкиваться со случаями, когда нагрузки в виде МПа/м2 указываются для склада со стеллажным хранением. Налицо неверный подход, при котором инженер делит сумму всех складских или производственных нагрузок на площадь. Иногда встречаются случаи, когда берется несущая способность стеллажа и делится на площадь, которую он занимает. Расчеты, выполненные на таких исходных данных, скорее всего, будут в корне неверными.

    Сосредоточенная нагрузка

    Дело в том, что в случае стеллажного складирования имеет место не распределенная нагрузка, а сосредоточенная (или точечная). Товары размещаются на многоярусных стеллажах, которые в свою очередь имеют небольшую площадь опирания на полы. Это создает очень серьезные нагрузки на плиты полов.

    Как правильно посчитать сосредоточенную нагрузку?

    За значение сосредоточенной нагрузки принимается давление под сдвоенной пяткой стеллажа. Сдвоенная опора находится между секциями стеллажа, и на нее приходится вдвое большая нагрузка, нежели на торцевые опоры. Для правильного расчета нагрузки нужно взять суммарную номинальную вместимость всех ярусов стеллажа, кроме напольного, и разделить на два. Рассмотрим пример: имеется стеллаж с пятью ярусами (напольный ярус не учитывается), на каждом из которых может храниться 3 паллета массой 1.200 кг:
    5 х 3 х 1,2 = 18 тонн
    То есть на каждой секции хранится до 18 тонн груза.

    Этот вес распределяется между четырьмя опорами, однако на опоры между секциями приходят нагрузки сразу с двух сторон. Таким образом, нагрузка на каждую опору составит 9 тонн (см. иллюстрацию).

    При передаче данных инженеру-проектировщику следует также указать размер пятки опоры стеллажа, поскольку пятка размерами 110х110 мм создает при равной нагрузке почти вдвое большее давление на полы, чем пятка 150х150 мм.

    Также большое влияние имеет расстояние между смежными рядами стеллажей.

    Такой же подход к определению нагрузок используют и применительно к производственному оборудованию, если оно устанавливается непосредственно на полы. Вес станков и производственных линий распределен между стойками и опорами, поэтому представляет собой сосредоточенную нагрузку.

    В случаях высотного складирования нагрузки на одну опору могут достигать 10-12 тонн. В таких ситуациях допускается использование понижающего коэффициента, учитывающего степень заполняемости склада.

    Другие виды нагрузок

    Также в целях проектирования принято выделять и другие виды нагрузок на полы.

    Колесная нагрузка – создается транспортными средствами, заезжающими на полы и перемещающимися по ним. Для правильной спецификации этих нагрузок необходимо знать распределение веса между осями транспортного средства и размер пятна контакта колеса с поверхностью. Также важно знать, парные ли колеса, какое расстояние между ними во всех направлениях. Хотя этот тип нагрузок схож с точечными, они обладают отличительной особенностью – динамикой. То есть при движении происходит приращение воздействующей на полы силы, что должно найти свое отражение в проектных расчетах.

    Линейная нагрузка

    Отдельные виды систем хранения грузов имеют вытянутые и узкие опоры, что позволяет рассматривать их как линейную нагрузку. В техническом задании на проектирование необходимо указать геометрические параметры этих опор, расстояния между ними и, естественно, массу складируемых на них товаров или материалов. Находящиеся непосредственно на полу рельсы тоже создают этот тип нагрузки, и к ним применяются те же подходы.

    Специфика нагрузок, имеющих место на предприятии, неотделима от понимания технологических процессов и характеристик используемого оборудования. Если Вы испытываете трудности с описанием нагрузок на Вашем объекте, Вы можете обратиться в компанию «Би Райт» за консультацией, и наши специалисты по проектированию полов помогут Вам.

    Расчет несущей способности пола.

    Архитектура

    Столкнулся с проблемой расчета несущей способности пола склада. Здание существует и надо выяснить, что и как можно в нем хранить. Заказчик просит привести все к простой формуле – «Нагрузка на пол не более 1000 кг/м2» или что-то вроде того. Немного не представляю, как такую величину можно вычислить.
    Пошел другим путем, взял размер ноги стилажа и просчитал пол на продавливание. Получилось не более 6 тонн на стилаж. Но кто знает, какие там будут стилажи и что там будет вообще, а характеристики надо дать.
    Не могу найти старый СниП по полам, там, как утверждали мои коллеги, расчет пола присутствует.
    Кто и как решает похожие проблемы?

    Исходные данные, если кому интересно:
    Конструкция пола послойно:
    — бетон В15 – 100 мм.
    — сетка 5Вр100х100
    — щебень трамбованный с проливкой — 300 мм.
    — песок

    Подсчитал на продавливание бетон.

    А если подсчитать несущую способность грунта, то возможность нагружать пол огромная.
    Примерно 20 тонн/м2, не совместимо с жизнью, мне кажется.

    Тогда зачем в складах делают полы с армированием сеткой 12мм.?

    Старый СНиП на полы отменен,но как пособие очень полезен.Он разработан в годы экономии стали ,армирование там — не характерное решение .

    Сообщение от :
    Грунт несет, пол выдерживает. Осталось только исключить проседание грунта и всякое раздолбайство.

    Как правило пол устраивается по свеженасыпанному (хорошо ,если кое-как уплотненному), а фундаменты — на грунте природного сложения,поэтому такой подход недопустим (т.е R грунта в такой ситуации — фикция)..

    Сообщение от :
    А в СНиПе много всякого бреду написано.

    Например? В каком?

    Сообщение от :
    А армируют либо при динамических нагрузках, либо чтоб связать карты. Чаще всего для спокойного сна.

    На мой взгляд,армируют часто потому,что не разрезают усадочными швами и компенсируют это армированием,при хорошо подготовленном основании и устройстве швов армирование малоэффективно.

    Кроме продавливания для пола никакого расчета никто не видел?
    И не скажет?
    И не напишет.
    И не позвонит.

    На ваши вопросы можно ответить только специальным исследованием.
    Ближе всего это к дорожной тематике.
    Совет: обратитесь в МАДИ на кафедру .
    В-общем, пишите в личку или на E-mail — помогу контактом.

    Зачем изобретать велосипед.
    Конечно -если Вы хотите, чтобы все сегда срастолось и было вечным.

    В общем заказчик всегда прав.
    Готовишь ему письмо . Прошу утвердить нагрузки на пол, например, приведенные 1000кг/м2. Согласовываешь и в проект этот листик обязательно вставляешь.
    И не надо гадать какому из арендаторов он это помещение сдаст.
    Ты чист.

    Но уж будь добр, на нагрузки утвержденные Заказчиком все верно расчитай.

    Опс.
    Неверно понял вопрос.

    Исправляюсь.
    Вскрытие полов делал?
    Статическое или чтоб быстрее динамическое зондирование грунтов полов делал? (Почему-то все говорят о полах по грунту).
    А дальше считай.
    Но как раз харакетр нагрузок: равномерные нагрузки или сосредоточенные, и с учетом пристутствия погрузчиков и их транспортных путей согласовывай с заказчиком и в проект этот листик.

    Читать еще:  Как сделать вазоны из ткани и бетона

    Предлагаю вернуться к самому вопросу.
    Здание существует, полы существуют – необходимо оценить несущую способность полов по грунту.

    Мне видится такое решение (собственный опыт):
    1. Площадь пола и конструктивное решение здания определяет количество необходимых вскрытий – от вскрытий и шурфов, до простого бурения перфоратором. Определяется: состав полов, армирование, класс бетона послойно, состав основания пола, наличие пустот от неравномерных просадок грунтового основания или подготовки под полы (очень часто встречается).
    2. Динамическое зондирование грунтов основания в каждой точке вскрытия (глубина зондирования в зависимости от предполагаемых нагрузок). Определяется: состояние и несущая способность грунтов, качество подготовки грунтового основания при строительстве.
    3. Расчет максимальной несущей способности грунтового основания при равномерно-распределенной нагрузке, со следующими допусками:
    — не учитывать опирание бетонного или железобетонного пола на фундаментные конструкции здания (в зависимости от пролетов, приямков и т.п.);
    — рассчитать основание под одним кв.м пола без учета его общей площади;
    — оценить возможные осадки грунтового основания полов к осадкам фундаментов здания.
    4. Выполнить расчет плиты пола на продавливание от действия равномернораспределенной нагрузки и от действия сосредоточенной силы.
    5 .Сделать выводы для обоих случаев с учетом п.3.
    6. Принять минимальные значения.
    7. Разработать рекомендации по несущей способности полов – о возможности применения сосредоточенных нагрузок, динамических нагрузок от транспорта и т.п.
    8. Сдать работу Заказчику.
    9. Напроситься на доп.соглашение к договору.
    9.1. по вопросам оценки влияния нагрузок от полов на конструкции и грунты основания фундаментов всего здания. Это вопрос очень часто игнорируется, а зря, например, несущая способность грунтов основания фундаментов здания на пределе, а нагрузка на полы будет превышена, или, оценка влияния пригруза на полы на несущую способность свай здания – негативное влияние сил трения по боковой поверхности свай еще пока не отменили.
    9.2. по вопросам усиления полов в связи с технологией эксплуатации помещений;
    9.3. по вопросу разработки проекта исключения влияния полов на конструкции здания;
    9.4. и т.п. в зависимости от местных условий и состояния конструкций (гидроизоляция, теплоизоляция, полы под морозильники и т.д.).
    10. Получить деньги от заказчика и предложения о работе от других заказчиков, по рекомендациям старого.
    11. Пропить деньги в хорошем ресторане.
    12. Похмелиться и снова ринуться в работу, уже с богатым опытом.

    Полы технические требования и правила проектирования, устройства, приёмки, эксплуатации и ремонта в развитие

    Примеры расчёта прочности пола с бетонным подстилающим слоем

    Требуется определить толщину бетонного подстилающего слоя в проезде складского помещения. Покрытие пола бетонное, толщиной h1 = 2,5 см. Нагрузка на пол — от автомобилей МАЗ-205; грунт основания — суглинок. Грунтовые воды отсутствуют.

    1. Определим расчётные параметры.

    Для автомобиля МАЗ-205, имеющего две оси с нагрузкой на колесо 42 кН, расчётная нагрузка на колесо по формуле (6):

    Площадь следа колеса у автомобиля МАЗ-205 равна 700 см 2

    Согласно формуле (5) вычисляем:

    По формуле (3) rр = 15 + 2,5 = 17,5 см

    2. Для суглинистого грунта основания при отсутствии грунтовых вод по табл. 2.2

    Для подстилающего слоя примем бетон по прочности при сжатии В22,5. Тогда в зоне проезда в складском помещении, где на полы не устанавливается стационарное технологическое оборудование (согласно п. 2.2 группа I), при нагрузке от безрельсовых транспортных средств по табл. 2.1 Rδt = 1,25 МПа, Eб = 28500 МПа.

    3. Определим напряжение растяжения в бетоне плиты при изгибе σр. Нагрузка от автомобиля, согласно п. 2.4, является нагрузкой простого вида и передаётся по следу круглой формы. Поэтому расчётный изгибающий момент определим по формуле (11). Согласно п. 2.13 зададимся ориентировочно h = 10 см. Тогда по п. 2.10 принимаем l = 44,2 см. При ρ = rр/l = 17,5/44,2 = 0,395 по табл. 2.6 найдём K3 = 103,12. По формуле (11): Мр = К3·Рр = 103,12·50,4 = 5197 Н·см/см. По формуле (7) вычисляем напряжения в плите:

    Напряжение в плите толщиной h = 10 см превышает расчётное сопротивление Rδt = 1,25 МПа. В соответствии с п. 2.13 расчёт повторим, задавшись большим значением h = 12 см, тогда l = 50,7 см; ρ = rр/l = 17,5/50,7 = 0,345; К3 = 105,2; Мр= 105,2·50,4 = 5302 Н·см/см

    Полученное σр = 1,29 МПа отличается от расчётного сопротивления Rδt = 1,25 МПа (см. табл. 2.1) менее чем на 5%, поэтому принимаем подстилающий слой из бетона по прочности при сжатии класса В22,5 толщиной 12 см.

    Требуется определить для механических мастерских толщину бетонного подстилающего слоя, используемого в качестве пола без устройства покрытия (h1 = 0 см). Нагрузка на пол — от станка весом Pp = 180 кН, стоящего непосредственно на подстилающем слое, равномерно распределяется по следу в виде прямоугольника размером 220´120 см. Особых требований к деформации основания не предъявляются. Грунт основания — мелкий песок, находится в зоне капиллярного поднятия грунтовых вод.

    1. Определим расчётные параметры.

    Расчётная длина следа согласно п. 2.5 и по формуле (1) ар = а = 220 см. Расчётная ширина следа по формуле (2) bp = b = 120 см. Для грунта основания из мелкого песка, находящегося в зоне капиллярного поднятия грунтовых вод, согласно табл. 2.2 K = 45 Н/см 3 . Для подстилающего слоя примем бетон по прочности при сжатии класса В22,5. Тогда в механических мастерских, где на полы устанавливается стационарное технологическое оборудование без особых требований к деформации основания (согласно п. 2.2 группа II), при неподвижной нагрузке по табл. 2.1 Rδt = 1,5 МПа, Eб = 28500 МПа.

    2. Определим напряжение растяжения в бетоне плиты при изгибе σр. Нагрузка передаётся по следу прямоугольной формы и, согласно п. 2.5, является нагрузкой простого вида.

    Поэтому расчётный изгибающий момент определим по формуле (9). Согласно п. 2.13 зададимся ориентировочно h = 10 см. Тогда по п. 2.10 принимаем l = 48,5 см.

    С учётом α = ар/l = 220/48,5 = 4,53 и β = bр/l = 120/48,5 = 2,47 по табл. 2.4 найдём К1 = 20,92.

    По формуле (7) вычисляем напряжение в плите:

    Напряжение в плите толщиной h = 10 см значительно меньше Rδt = 1,5 МПа. В соответствии с п. 2.13 проведём повторный расчёт и, сохраняя h = 10 см, найдём более низкую марку бетона плиты подстилающего слоя, при которой σр » Rδt. Примем бетон класса по прочности на сжатие В15, для которого Rδt = 1,2 МПа, Eб = 23000 МПа.

    Тогда l = 46,2 см; α = ар/l = 220/46,2 = 4,76 и β = bр/l = 120/46,2 = 2,60; по табл. 2.4 К1 = 18,63;. Мр = 18,63·180 = 3353,4 Н·см/см.

    Полученное напряжение растяжения в плите из бетона класса по прочности при сжатии В15 меньше Rδt = 1,2 МПа. Примем подстилающий слой из бетона класса по прочности при сжатии В15 толщиной h = 10 см.

    Требуется определить толщину бетонного подстилающего слоя пола в машино-стоительном цехе при нагрузках от станков автоматизированной линии и автомобилей ЗИЛ-164. Схема расположения нагрузок приведена на рис. 1в’ , 1в» , 1в»’. Центр следа колеса автомобиля находится на расстоянии 50 см от края следа станка. Вес станка в рабочем состоянии Рр = 150 кН распределяется равномерно по площади следа прямоугольной формы длиной 260 см и шириной 140 см.

    Покрытием пола является упрочнённая поверхность подстилающего слоя. Грунт основания — супесь. Основание находится в зоне капиллярного поднятия грунтовых вод

    Определим расчётные параметры.

    Для автомобиля ЗИЛ-164, имеющего две оси с нагрузкой на колесо 30,8 кН, расчётная нагрузка на колесо по формуле (6):

    Площадь следа колеса у автомобиля ЗИЛ-164 равна 720 см 2

    Для супесчаного грунта основания, находящегося в зоне капиллярного поднятия грунтовых вод, по табл. 2.2 К = 30 Н/см 3 . Для подстилающего слоя примем бетон класса по прочности при сжатии В22,5. Тогда для машиностроительного цеха, где на полы установлена автоматизированная линия (согласно п. 2.2 группа IV), при одновременном действии неподвижных и динамических нагрузок по табл. 2.1 Rδt = 0,675 МПа, Еб = 28500 МПа.

    Читать еще:  Утепление фундамента на винтовых сваях

    Зададимся ориентировочно h = 10 см, тогда по п. 2.10 принимаем l = 53,6 см. В этом случае расстояние от центра тяжести следа колеса автомобиля до края следа станка равное 50 см I = M + ΣMi = 2755,5 — 758,05 = 1997,45 Н·см/см

    Напряжение растяжения в плите при изгибе по формуле (7):

    Расчёт 2 Определим напряжение растяжения в бетоне плиты при изгибе σр II для расчётного центра O1 при направлении ОУ перпендикулярно длинной стороне следа станка (рис. 1в» ). Разделим площадь следа станка на элементарные площадки согласно п. 2.18. Совместим с расчётным центром O1 центр тяжести элементарной площадки квадратной формы с длиной стороны ар = bр = 140 см.

    Определим нагрузки Рi, приходящиеся на каждую элементарную площадку по формуле (15), для чего сначала определим площадь следа станка F = 260·140 = 36400 см 2 ;

    Для определения изгибающего момента М от нагрузки Р вычислим для элементарной площадки квадратной формы с центром тяжести в расчётном центре O1 значения α = β = ар/l = bр/l = 140/53,6 = 2,61 и с их учётом по табл. 2.4 найдём K1 = 36,0; исходя из указаний п. 2.14 и формуле (9) вычисляем:

    Определим суммарный изгибающий момент ΣМi, от нагрузок, расположенных вне расчётного центра O1. Расчётные данные приведены в табл. 2.10.

    Расчётные данные при расчётном центре O1 и направлении оси ОУ, перпендикулярном длинной стороне следа станка

    Толщина бетона под разные поверхности

    Хозяйственные постройки и сооружения из тяжелого бетона, такие как: погреб, бассейн, площадка под стоянку автомобиля, отмостка, стяжка пола и площадка перед входной группой дома, как правило, возводятся без разработки проекта.

    Поэтому один из основных вопросов который интересует непрофессионального застройщика – это вопрос, какой должна быть толщина бетона площадки под машину, толщина бетона для теплого пола, а также толщина бетонных стен погреба или бассейна. Рассмотрим толщину конструкций этих распространенных видов бытовых и хозяйственных сооружений подробнее.

    Толщина бетона для площадки под машину

    Существует расхожее мнение, что толщина покрытия под те или иные цели в первую очередь зависит от веса автомобиля. На самом деле это не совсем так. Давайте рассчитаем величину нагрузки «на сжатие» (удельное давление) которое испытывает плита бетона от самой тяжелой легковой машины – внедорожника Jeep Cherokee, 2,8 CRD, массой 2520 кг. Определяем удельную нагрузку на бетон:

    • Исходные данные для расчета: вес машины 2520 кг, ширина шины 23,5 см, количество шин 4 шт., габариты площади пятна контакта шины с бетоном 23,5х40 см (примерно).
    • Определяем площадь давления: 23,5х40х4=3760 см2.
    • Определяем удельное давление: 2520/3760=0,67 кг/см2.

    Аналогичным методом, зная ширину колеса, количество колес и размеры отпечатка, можно определить удельное давление на бетон создаваемое любой машиной.

    Однако! Самая ходовая марка тяжелого бетона М150, используемая для строительства таких сооружений как открытая площадка под машину и пол в гараже, выдерживает давление до 150 кгс/см2. Как следует из приведенного выше расчета, имеется большой запас прочности.

    Поэтому удельным давлением, создаваемым любой легковой машиной можно пренебречь и рассмотреть необходимую толщину бетона под машину и толщину бетона в гараже с другой стороны.

    При постановке машины на площадку или в гараж бетонная плита и бетонный пол испытывают, в том числе динамическую изгибающую нагрузку от веса движущейся машины. Как известно прочность бетона на изгиб в 8-10 раз меньше чем прочность на сжатие. Другими словами, толщина слоя бетона должна быть достаточной чтобы плита не раскололась под воздействием комплекса сил: динамических изгибающих и статических сжимающих.

    Здесь можно воспользоваться практическим опытом и техническими требованиями ГОСТ 10180-2012 в части габаритов контрольных образцов бетона для лабораторных испытаний на сжатие и изгиб. Минимальный размер кубика для испытания на сжатие и изгиб по ГОСТ 10180-2012 – 100х100 мм. Точно такая же цифра фигурирует во всех практических отчетах опытных строителей.

    Таким образом, толщина бетона под автомобиль (наружной площадки и пола в гараже) должна быть минимум 100 мм. Это самый оптимальный вариант.

    Для надежности, плиту и пол рекомендуется армировать стальной проволокой или стальной арматурой.

    Толщина бетона для пола

    Толщина бетонной стяжки пола зависит от величины механического воздействия и оговаривается требованиями нормативного документа – СНиП 2.03.13-88:

    • Очень высокий уровень механической нагрузки на поверхность пола: 50 мм.
    • Большая нагрузка: 40 мм.
    • Умеренное воздействие: 30 мм.
    • Слабое воздействие 20 мм.

    В практике строительства бетонных полов в квартирах, домах и придомовых постройках толщина заливки бетона по умолчанию принимается от 30 до 40 мм.

    В последнее время частные дома оснащаются теплыми полами. При этом теплые полы бывают с электрическим и водяным подогревом. В первом случае конструкция нагревается специальными проводом, а во втором горячей водой циркулирующей по трубопроводам, находящимся в толще пола. Поэтому расчет толщины бетона для теплого пола производится индивидуально в зависимости от диаметра трубопровода или диаметра нагревательного провода.

    В общем случае расчет следующий: 20-30 мм бетона под укладку нагревательных элементов +диаметр провода (6-7 мм) или диаметр трубы (обычно 22 мм, полудюймовая водогазопроводная труба)+20-40 мм (бетонной стяжки над нагревательным элементом).

    Получается что для «электрического теплого пола толщина стяжки составляет в среднем 46-76 мм, а для «водяного» теплого пола 62-92 мм.

    Толщина стен погреба из бетона

    Подземное овощехранилище, возведенное из бетона – один из самых бюджетных вариантов при всех прочих равных условиях: долговечности и функциональности.

    Так, если для строительства кирпичного погреба могут потребоваться услуги квалифицированного каменщика, обустроить бетонный погреб можно своими руками и тем самым сэкономить на дорогостоящем наемном труде.

    При этом очень важным вопросом, от которого зависит конечная стоимость строительства сооружения, является вопрос оптимальной толщины стен овощехранилища.

    Оптимальная толщина стен подземного погреба обустроенного в сухом грунте с низким стоянием грунтовых вод составляет 150 мм с обязательным вертикальным армированием. В этом случае стены не испытывают серьезных механических нагрузок, поэтому величина 150 мм, принимается исходя конструктивных соображений и удобства заливки.

    При обустройстве сооружения во влажных грунтах с высоким стоянием грунтовых вод, стенки погреба в зимнее время испытывают достаточно серьезную нагрузку от пучения грунта. В этом случае толщина стен должна быть минимум 250 мм, также с обязательным вертикальным армированием.

    Указанные величины подтверждаются практическим опытом строительства и эксплуатации бытовых подземных сооружений габаритами от 2х2 до 4х4 метра в плане.

    Толщина стенки бассейна из бетона

    Монолитный бетонный бассейн – это дорогостоящее сооружение. При этом цена бетона для заливки чаши сооружения, является одной из основных статей себестоимости строительства. Правильный расчет необходимого количества строительного материала дает возможность заказать оптимальное количество бетона и свести затраты на заливку чаши к минимально возможному «минимуму» при всех прочих равных условиях.

    В части оптимальной толщины стенок бассейна нет требований нормативных документов, как в случае с толщиной бетона для площадки стяжки пола. Поэтому приходится пользоваться эмпирическими данными, полученными от опытных застройщиков подобных сооружений.

    При обязательном горизонтальном и вертикальном армировании, толщина стенок бассейна, полученная эмпирическим способом и проверенная практикой, должна быть не менее 200-250 мм. Увеличение толщины стенки бассейна выше 250 мм ведет к неоправданному, довольно значительному увеличению стоимости строительства.

    Чем измерить толщину?

    Многих частных застройщиков, которые заказали строительство рассмотренных в этой статье сооружений компаниям или частным лицам, и не имеющим возможности наблюдать за работой лично, интересует вопрос контроля качества работ в части соблюдения подрядчиками проектной толщины бетона.

    В этом случае понадобится прибор для измерения толщины бетона. Учитывая высокую стоимость подобного оборудования(250-260 тысяч рублей), есть смысл взять его в аренду на время проведения приемочных испытаний.

    Толщиномер бетона TC300

    Одним из оптимальных вариантов оборудования для контроля толщины бетонных сооружений является прибор «Толщиномер бетона TC300». Стоимость аренды подобных приборов доступна и находится в пределах 300-500 рублей в сутки с внесением соответствующего возвращаемого денежного залога.

    Заключение

    Подводя итог данному повествованию, стоит отметить, что при создании этой статьи учитывался успешный личный опыт строительства бетонных сооружений автора публикации и успешный опыт его коллег по бизнесу заслуживающих доверия.

  • Ссылка на основную публикацию
    Adblock
    detector